Safe Landings: November 2014

Non-Towered Aircraft Operations

At an airport without an operational control tower, sometimes referred to as an “uncontrolled” airport, communication is one of the key elements in maintaining proper aircraft separation. Use of the Common Traffic Advisory Frequency (CTAF) helps to assure the safe, orderly flow of arrival and departure traffic. FAR 91.113 cites basic right-of-way rules and FAR 91.126 establishes traffic-flow rules at non-towered airports. The Aeronautical Information Manual (AIM) and FAA Advisory Circular 90-66A expand on these regulations to define procedures for operations at non-towered airports. Staying visually alert is the final measure of defense against aircraft that may be operating without a radio or without regard to the standard non-towered airport procedures. The following ASRS reports highlight some of the problems commonly associated with non-towered airport operations.

Unexpected Opposition – Two Opposite Runway Takeoff Incidents

A C680 Flight Crew had to abort their takeoff when an aircraft made an unannounced departure on the opposite runway. It is not known if the “other airplane” failed to use a radio or did not have one. For aircraft without a radio installed, the use of a hand-held transceiver is highly recommended at busy non-towered airports.

After boarding passengers and starting engines, we notified [Departure Control] that we were ready for [IFR] departure on Runway 17. We were informed that there would be a delay if we used 17, so we decided to depart on Runway 35 to avoid the delay since winds were calm. There was one aircraft that departed Runway 17 as we were taxiing to Runway 35, but we did not hear or see any other traffic. We were released by Departure from Runway 35 at which point we visually cleared the area left and right and transmitted on CTAF that we were departing [Runway] 35. We did hear another aircraft arriving from the north about six miles away, but did not see it. After takeoff we were to make a sharp left turn and knew the traffic would not be a factor. As soon as we took Runway 35 and advanced the power for takeoff, the Co-Pilot called, “Airspeed alive” and then said he saw an airplane far down the runway. I yelled, “Abort” below 50 knots. We watched the other airplane lift off and sidestep slightly to the right as we exited the runway. [It]…passed abeam us by about 400 feet. We never heard anything else on the radio.

In another example of “unexpected opposition,” the pilot of an experimental aircraft encountered opposite direction traffic that failed to announce a departure against the flow of traffic.

Calm winds prevailed on arrival…. I landed and refueled. The calm wind runway at [this airport] is Runway 15. I prepared to take off and announced I was holding for 15. Inbound traffic started to announce entering the 45 for Runway 15 and one aircraft announced turning base on Runway 15. I broadcast my departure on 15 and rolled. Another aircraft came into view rolling on Runway 33. I sidestepped to the west of the runway approximately 50 feet. When the other aircraft saw me, he then sidestepped to the east. I announced that two aircraft were departing in opposite directions from Runway 15 and 33 to alert other traffic. Other traffic acknowledged. The departing low wing aircraft then announced that he was crosswind on Runway 33 and I announced I was crosswind on Runway 15. We went our separate ways. I estimate we passed each other by about 250 feet. The other aircraft was not using his radio and was not following local procedure to use [the] calm wind Runway 15.

Over the Top

An alert C182 pilot was wise to keep an eye on another pilot who was not communicating and apparently not paying attention to other traffic.

I was taxiing for takeoff…. At the entrance to Runway 18, I saw that the windsock showed light wind from the north. I saw an aircraft in the run-up area of Runway 36. I announced on CTAF that I would back taxi on Runway 18 to the intersection of Runway 18 and the taxiway and would then exit the runway. While back taxiing, the aircraft in the run-up area of Runway 36 taxied onto Runway 36 with no radio call. I announced on CTAF again that I was now back taxiing on Runway 18 with no response from the other aircraft. The aircraft on Runway 36 then commenced takeoff with no radio call. I moved to the right as far as possible and stopped at the edge of the runway. The other plane rotated over my aircraft.

Say What?

Using the CTAF to announce one’s intentions and to listen for other aircraft is the best means of preventing traffic conflicts. This M20 pilot had a frustrating encounter with another pilot who chose not to use the radio for a rather dubious reason.

On crosswind for Runway 9, I saw another aircraft departing Runway 23. I had heard no radio traffic, so I called on CTAF to see if he had his radio on; no response. I then flew downwind, base and final but could not see the other aircraft and there was no radio traffic on the CTAF. Just as I was about to touch down, the other aircraft crossed the intersection of Runways 5-23 and 9-27 about 1,000 feet in front of me as he landed on Runway 23. We were both landing simultaneously on intersecting runways. After shutting down, I walked to the other pilot’s hangar and asked him several questions: “Do you have a radio in your plane?” 
“Do you keep it turned on?” 
“Why not? We just about collided out there.” 
“I can’t hear it because of my hearing aid.” 
“Why don’t you get a headset?” 
“I have one. It doesn’t help.” 
“Did you realize that we were both landing and almost hit?” 
“Oh, were you landing?”

Intersection Near Miss

Bear in mind that while you follow all of the recommended procedures for non-towered airport operations, other pilots may not. This C172 pilot learned that keeping a good lookout is a major part of the “defensive flying” required at these airports, especially when there are intersecting runways.

The winds were from 310 degrees and slightly favored Runway 27. However, Runway 27 required a back taxi full length from the GA ramp, and there is a taxiway available to Runway 36. I elected to depart on Runway 36 due to the taxi options. I was monitoring the CTAF frequency all the way from the GA ramp to Runway 36. I announced on the CTAF frequency that I was departing Runway 36. I heard no announcements from other aircraft while taxiing, during engine run-up, or on takeoff. On takeoff, my wife, who is a pilot, called out another aircraft on Runway 27. Then I saw the aircraft and at the same time, someone called out the possible collision on CTAF. I decided I had enough airspeed to rotate. I lifted off and banked slightly to the left to miss the aircraft rolling through the runway intersection. We missed, but it wasn’t by much.

Because the C172 is a high wing aircraft, my view of Runway 27 was restricted after lining up on Runway 36. It is my guess that the other aircraft landed long on Runway 27 to reduce his time to get to the ramp. I have no idea how he approached Runway 27.

“We Missed by Maybe 30 Feet”

In another intersection near miss, an M20 pilot used the correct communication procedures, but failed to react to the visual alert from a cockpit passenger.

I took off from Runway 19, which was favored by the wind direction. Runway 19 has a displaced threshold due to trees on the approach. I did a run-up on the pavement between the ramp and the runway. I transmitted on CTAF (which I had used to speak to another pilot on the way in, so I knew it was the correct frequency) that I was entering Runway 19. Shortly after, I announced that I was departing from 19 and began the takeoff roll. I did not notice the aircraft on the run-up area next to Runway 27. I had accelerated to about 60 knots when I saw the other aircraft turn onto Runway 27 and begin either a taxi or takeoff roll, crossing directly into my path. I took evasive action. I don’t believe he did. We came very close to colliding (his propeller with my left wing). We missed by maybe 30 feet. I did not see the other aircraft until it was almost too late. I don’t know why I didn’t notice it. My 16-year-old son started pointing, but I thought he was pointing to a deer or debris or something. Perhaps I was fixated on the runway surface. The taxiway leading to Runway 27 turns south into the run-up pad for 27, so a pilot doing a run-up in preparation for takeoff on 27 is facing south and cannot see the start of Runway 19 behind him. (But when he/she turns onto 27, Runway 9 is clearly visible). The pilot of the other aircraft was not on CTAF, did not hear my radio calls and failed to check before crossing an active runway.




Safe Landings: October 2014

Fuel Management Errors

Fuel management errors continue to account for a significant percentage of the General Aviation forced landing incidents reported to ASRS. However, since fuel exhaustion and fuel starvation events often result in significant aircraft damage and personal injury, an even greater number of fuel management errors result in NTSB accident reports. 

The following ASRS reports offer sobering lessons from pilots who have “been there, done that” and, fortunately, survived to share their experiences. Top off your fuel management wisdom by learning from these fuel management mishaps.

In a Position to Fail

This Twin Piper pilot learned that “close” is not good enough when it comes to positioning fuel tank selector switches.

■ While flying solo on an IFR flight plan in a rental Twin Piper approximately 20 nautical miles to the east of my destination, I was cleared to descend from 8,000 feet to 6,000 feet. At this time, I was in IMC with light rain. As part of routine pre-landing checks, I switched both left and right tanks from Auxiliary to Main. As I was reaching 6,000 feet, the right engine started to run rough for a few seconds and subsequently failed. Since I was in the landing phase of the flight, there was no time to complete the “cause check” procedure. When ATC asked me to maintain altitude, I responded, “Unable” and explained that I was on one engine only. At this time, I was in VMC. I squawked 7700, declared an emergency, and requested vectors to the nearest airport. ATC vectored me to a nearby field, advised that I could land on any runway, and switched me to Tower frequency. Tower immediately cleared me to land. I maintained a safe airspeed, lowered the landing gear and flaps, and landed uneventfully. The next day, I found that although the fuel selector had been set to the Main position, the engine was still drawing fuel from the auxiliary tank, which had eventually emptied and led the engine to fail due to fuel starvation. Apparently, the fuel selector valve had not been positioned completely in its detent position (close, but had not “clicked”). This incident was a good lesson learned, and I have become more alert and diligent to ensure the fuel selector valves are properly positioned when using them to switch between tanks.

An Inconvenient Truth

A faulty recollection of the last flight influenced this C180 pilot’s optimistic interpretation of the aircraft’s fuel gauges. Although somewhat inconvenient, visually checking the fuel tanks could have prevented an even more “inconvenient” forced landing.

 The engine quit for (at the time) unknown reasons. I turned toward lower terrain while slowing to best glide speed. The area was mountainous with thick timber and mixed clear cuts, none suitable for landing. About five miles west, I chose a pasture and made a forced landing with no aircraft damage or personal injury. After my nerves settled down, I investigated the cause and found it to be fuel exhaustion. I thought I had pre-flighted the aircraft carefully. I had checked both right and left fuel gauges and believed them to be reading FULL. The gauges are original equipment for a Cessna 180 and were working properly. The problem is the gauges are built with EMPTY and FULL both on the bottom of the gauge, very close together. I also think the needles can go below EMPTY in certain attitudes, which would put them closer to the FULL marks. When [the tanks are] full, the gauges can go above the FULL mark, which would put them closer to the EMPTY mark. My last flight was almost three months prior and was a long one, landing not too much above FAA minimum fuel remaining. I mistakenly thought my last flight had been from my local fuel stop after filling up, which is the normal way I park the airplane. I was airborne around 30 minutes, which would fit with the fuel to be expected after the actual last flight. What I learned was to do a better preflight and watch out for the fuel gauge problem. The fuel gauges bounce around starting at about 1/4 tank and go to “0” when parked in the normal ground attitude. I did not check the tanks visually, which I will try to do any time the fuel gauges are not in the middle. The Cessna 180 tanks are hard to check (high wings made worse by large tires and the lack of any steps to climb up on in case a ladder is not available). My wish list includes better aftermarket fuel gauges for the aircraft and a better brain for me.

A Self-Induced Surprise

After inadvertently switching both tanks “OFF,” a Light Sport Aircraft pilot was fortunate to have plenty of runway remaining when the engine quit less than 200 feet in the air.

■ Having very recently completed my CFI renewal, BFR and Light-Sport Aircraft checkout at an FBO, this was to be my first solo flight in about a decade. Because of these circumstances, I was being very deliberate and careful in everything I did. The aircraft was the same one that I had flown for my BFR the week before. I had noted that the aircraft had a rather complex fuel system for a simple high-wing aircraft. It featured both engine-driven and electric fuel boost pumps and an independent fuel shutoff valve for each wing tank located on the respective windshield pillars. According to the checklist, the valves (small “batwing” types) are “OFF” at engine stop and, obviously, “ON” for flight operations. Additionally, the engine back-feeds surplus fuel to the right tank only, which introduces fuel management issues…. I had noted to friends that this seemed a bit complex for an LSA-class pilot and aircraft, but obviously (I thought to myself), not for ME. On preflight, I noted by visual check that the left tank was full and the right, brim-full. Since I knew that any excess returned to the full right tank would simply spill out the overflow tube, I started to think about “managing” that environmental issue, so after startup, I positioned the selector valves to draw off the right tank only during taxi and run-up. Because I had noted that there were no fuel tank items on the Before Takeoff checklist, I would have to remember to recheck/reconfigure the fuel selectors.

After more than 50 years in aviation, I thought I could remember to do this, and I did, just before taking the runway. With that mentally checked off, I rechecked the other items (flaps and trim, engine gauges) as I lined up. The [aircraft] leapt off the ground in a few hundred feet. Somewhere between 100 and 200 feet, the engine sputtered and quit. After a fraction of a second of disbelief, having never had a complete power failure before (let alone on takeoff), I dumped the nose and landed uneventfully well before the first turnoff. 

As I rolled out I wondered, “Why?” There was no mixture control or carb heat on this engine, the Aux Fuel pump was on, and I knew I had checked and reset the fuel selectors. I looked at each windshield pillar and noted with satisfaction that they were both similarly positioned. Then to my astonishment, I processed what I was seeing; they were both “OFF”! I turned them back on, turned the key, and the engine was running again…. 

It was obvious “what” had happened, but it took about two hours after the flight for me to suddenly realize “how.” As I ran back through my thought processes at run-up, I realized that because all my thinking about the fuel situation was focused on the right tank, when the time came to reconfigure, I moved the “RIGHT” (wrong!) fuel selector, which of course had been “ON” to burn some excess fuel while the left was “OFF.” I turned the right tank “OFF” because my brain had become fixated on changing the right tank, rather than on both tanks “ON.’” While I’m hardly surprised that I could make a mistake, I was astonished that I could make THIS one. 

I fully understood the fuel system and its selectors. While it is a bit complex for a simple aircraft, and in some respects the system design helped me make this mistake, I’ve logged substantial flight time in…many other aircraft with more complex fuel systems than this one, and never had a single self-induced fuel system surprise. Nor was I rushed or over-confident on this occasion. I wish I could remember whether I physically LOOKED at the fuel valves as I took the runway or whether I just mentally checked off “good to go” for that system. I hope it was the latter. I can’t imagine that actually “seeing” both valves horizontal wouldn’t have rung my bells. My take-away from the affair is not a new one for me or for any airman. Look AND think about each checklist item, especially the potential killers.

Nine Gallons Short of a Stetson

Two C172 pilots did not receive the 10 gallons of fuel they paid for and subsequently learned a lesson about the need to verify the amount of fuel on board. But given the fuel required for the one-hour reserve, perhaps their calculation of the fuel needed for the flight was also a bit short.

■ During an instrument flight lesson we decided to add 10 gallons of fuel to meet the club requirements of one-hour reserve. We requested 10 gallons of fuel with ramp personnel and the FBO front desk. We went in and flight planned, and in approximately a half hour, we paid our fuel bill for 10 gallons and departed. We thought we had the fuel, but we experienced an engine out on short final followed by an emergency landing. We received a phone call from the FBO the next day stating that the fuel uplift was in error and that we received only one gallon as opposed to the ten gallons we paid for.



Safe Landings - June 2014

Message from the Editor: Though these incidents are all airline related, the systems involved are now also used in GA and could cause accidents.

Autoflight control modes generally involve interrelated functions of the Flight Management System (FMS), the flight director, the autopilot and autothrottles. The mode logic controlling the combined input of these systems can be very complex. Despite focus on design improvements and training emphasis on flight management modes, ASRS continues to receive a significant number of incident reports on mode related errors. While they usually result in minor “altitude busts” or crossing restrictions not met, mode errors can also lead to more serious outcomes including Controlled Flight Toward Terrain (CFTT).

Some of the more common mode errors seen in ASRS reports include:

  • Selection of the wrong mode
  • Inadequate knowledge of mode functions
  • Undetected automatic mode sequencing
  • Failure to monitor for activation of selected mode

    The following reports all deal with one or more of these mode errors, but may reference terms and procedures that are unfamiliar. There are system variances among manufacturers and procedural differences among companies. Some aircraft were designed around autoflight systems and others have been retrofitted with various levels of automation. What is common to all of these scenarios, however, is that by using a procedure such as suggested by the acronym CAMI (Confirm, Activate, Monitor, Intervene) and by maintaining situational awareness, mode errors can be recognized before they adversely affect flight safety.

Wipe Out

By “cleaning up” the FMS after localizer capture, an MD-11 Captain inadvertently wiped out the NAV/LOC mode.

• While being vectored to final, ATC gave us a heading with clearance to intercept the localizer course… The Pilot Flying instructed me to arm the localizer. I responded that we needed to be in NAV before arming the localizer because of the strong overshooting winds (42 knots at 4,000 feet MSL).

The Pilot Flying selected NAV and then I armed the localizer for him as he requested a cleanup of the FMS. I saw that NAV/LOC had both armed and went heads down to clean up the FMS. I looked up to see the airplane starting a left-hand turn away from the runway and immediately instructed the Pilot Flying to turn back towards the runway. I also glanced at the PFD and noticed we were now in Heading mode (no NAV or LOC armed/selected). The result was an overshoot of the final approach course. I instructed the Pilot Flying to be aggressive in getting back over to final as we received a follow-on intercept heading from ATC.
Selecting NAV and then LOC was needed, but the FMS should have been cleaned up prior to selecting these modes. By selecting them first and then cleaning up the FMS, I may have inadvertently put us in Heading mode. Also, the First Officer needed to monitor our lateral mode and be ready for any reversions or changes to that mode. When the plane attempts to do something we don’t want it to do, the Pilot Flying needs to turn the autopilot off immediately and put the airplane in the correct position.
FMS clean up should take place well before the intercept to final and as Pilot Monitoring, I should have been more aggressive in making that happen earlier.

Mismanaged Mode

After an inquiry from ATC, an A320 Captain realized that the Airbus FMC’s Managed Descent mode requires proper management in order to start a descent.

• Center gave us a clearance to descend to FL330 and fly direct to a fix. I pushed the ALT (Altitude) button to descend in Managed Descent mode then typed in the clearance to fly directly to the fix. I then checked the crossing altitude in the FMC for the arrival. Four minutes later ATC called and asked if we were descending.
While on a heading, the A320 will not descend in Managed mode, so the aircraft stayed at FL350. If I would have programmed the FMC first, then pushed the ALT button, the aircraft would have descended in the Managed Descent mode. I also could have pulled the ALT button and descended in Open Descent mode or in the Vertical Speed mode. Our procedure is to check the FMA’s once you have made an input to the auto flight system. I did not do this.

“This One Scared Me”

Mode selection is not limited to the Flight Management Computer. In the following report, an air carrier Flight Crew demonstrated why selection of the proper Nav Display mode was a critical item in their localizer approach procedure.

• Cleared to descend to 2,000 feet, we were turned towards final by Approach Control. [We were] then given another turn to intercept and cleared for LOC 31 approach, maintain 2,000 until QUENE. The final intercept vector was going to bring us well inside QUENE, so I extended off FABRY (FAF), armed the LOC, and switched to ARC mode on my NAV Display to monitor DME in order to identify abeam QUENE, and to monitor LOC capture.

After passing abeam QUENE at 10.3 DME, with LOC capturing and FABRY (FAF) next, I called for the First Officer to set and arm 600 feet, which was our MDA, and I initiated descent out of 2,000 feet. It was a busy time now completing final configuration for landing, slowing down, and completing the Landing checklist. I had left ARC mode on my NAV Display. I was not aware that the First Officer was also in ARC mode, thus neither of us were watching the “football” on the NAV Display which was now our only protection for crossing FABRY at 1,700 feet, the published altitude at the FAF.
On the LOC and descending, we were told to contact Tower. Before Tower contact was made, the First Officer figured it out and said, “Hey, we’re really low. We need to climb.” The altitude was approximately 1,100 feet, or 600-feet low, a couple of miles outside FABRY. I realized what I had done and climbed back to 1,700 feet just as we reached FABRY. Tower…issued a low altitude alert. After FABRY a normal descent to landing was made. We were IMC until about 1,100 feet… We did not get a GPWS warning. ?
This one scared me. I fully grasp that being that far (600 feet) below a hard altitude on an approach will get you killed in many places. I honestly don’t think complacency was our issue. I was not cavalier about this approach and neither was the First Officer. The approach was thoroughly briefed. One thing I did not specify though was who would have what (ARC or MAP) displayed on the NAV Display. We needed both for at least a short while, in order to see DME.
As pilot flying, it was my responsibility to see that I had displayed what I needed to shoot this approach in accordance with our procedures. I made a mistake when I did not go back to MAP mode after passing abeam QUENE. If MAP mode had not been available, then I would have had to set 1,700 feet for FABRY, followed by 600 feet for the MDA after passing FABRY. If MDA is set outside the FAF, then I MUST be in MAP prior to the FAF.

I am fortunate to have had a good First Officer who regained situational awareness before I did.

Early Descent

Luckily this MD11 Flight Crew was in visual conditions when “the airplane” tried to descend early.

• After being cleared for the ILS…under visual conditions, at some point the aircraft came out of Profile Descent mode or it was deselected. The aircraft descended below the Profile Descent path.
At about 12 miles from the field, we elected to level off at approximately 1,500 feet AGL. We had the field visually and…the rest of the approach was flown without issue.

The altitude that was set in the Altitude Select window was the Decision Height. The airplane was trying to descend early to the Decision Height because Profile Descent was not engaged. A better check of the Profile mode would have stopped this from happening. We also should have left the last assigned altitude in the Altitude Select window. This also would have stopped the plane from descending early.


Safe Landings - April 2014

Checklist Checkup

Checklists are used by pilots to assure that the aircraft is properly configured for each phase of flight. Checklists are also used to provide appropriate response to abnormal or emergency situations. While checklists do provide a means of guiding a pilot or flight crew through complex procedures, they are not impervious to human error. Reports submitted to ASRS indicate that errors related to checklist usage generally fall into one of these five categories:

  1. Checklist interrupted
  2. Checklist item overlooked
  3. Use of the wrong checklist
  4. Failure to use a checklist
  5. Checklist confusion

Examples of these errors are found in the following ASRS reports.

1. Checklist Interrupted

Distractions and interruptions are the factors most often cited in ASRS reports involving checklist errors. This B737-300 Captain’s report shows that the distractions inherent in last minute preparations prior to pushback can easily lead to checklist omissions.

• During the accomplishment of the Before Pushback checklist, the Flight Attendant brought in the passenger count documentation at exactly the moment the First Officer read the “Takeoff Trim” item. I responded to the Flight Attendant interruption and subsequent verbal exchange and then the First Officer and I proceeded to the next item, “Cockpit Door,” without actually having reset the takeoff trim to the correct setting. During the takeoff, we received a Takeoff Warning horn as I advanced the throttles for takeoff. At approximately 10 knots, I rejected the takeoff and accomplished the immediate action items while the First Officer notified the Tower of the rejected takeoff. After clearing the runway and finishing the checklist items, I discovered the takeoff trim was not set in the proper position and was out of the green band area.

This event reminded me to be extra vigilant of the impact of distractions during checklist accomplishment. In fact, it took several errors in procedure to arrive at the runway without the trim set properly.

2. Checklist Item Overlooked

An MD11 Captain allowed a habit pattern to affect the proper completion of the Shutdown checklist. Fortunately, the First Officer returned to the cockpit and noticed that one more item needed to be “shut off.”

• Pulled into the gate, set the parking brake, and shut down the Number 3 engine. We waited a short time for external power and when we got it, I connected to it then shut down the Number 1 engine. I did the Shutdown checklist, debriefed, discussed the strange taxi routing, and left the aircraft. There was no crew bus so the First Officer went up to the cockpit to call for one and saw that the Number 2 fuel lever was still up. He shut off Number 2 and came back down to the ramp and informed me that the engine was still running when he went up to the cockpit.

I rarely taxi in on three engines and in this case did just that. I went through my normal shutdown habit pattern which is just shutting down one and three. I missed it on the shutdown checklist because I didn’t actually look at the levers because, in my mind, I was convinced I had shut them down.

Visually check everything on the checklist because it will help when your habit pattern is broken.

3. Use of the Wrong Checklist

By using the appropriate checklist, a crew can mitigate or eliminate the adverse effects of a system malfunction. But, as this B757 Crew learned, the wrong checklist can make the situation worse.

• On departure at approximately 300 feet AGL the First Officer’s Primary Flight Display (PFD) and Nav Display (ND) went blank. I assumed control of the aircraft and after reaching a safe altitude called for the First Officer to open his QRH and find the appropriate abnormal checklist for our situation (loss of right PFD and ND). The First Officer said he was ready to proceed and he read the first item on the checklist. I do not recall whether the First Officer read the title of the checklist aloud before he read the first item on the checklist.

The checklist called for us to check two circuit breakers supplying power to the Symbol Generator. Both circuit breakers were in. Next item on the list called for the Symbol Generator-1 Power circuit breaker to be pulled and then reset. The circuit breaker was pulled and this resulted in the loss of the Captain’s PFD and ND. At this point it was determined that the First Officer was reading the checklist for loss of left PFD and ND and we immediately attempted to reset the Symbol Generator-1 power circuit breaker with no success. We then completed the QRH procedure for loss of right PFD and ND, but we did not regain the First Officer’s PFD or ND.

After consulting with Dispatch, Maintenance Control, and the First Officer, and considering the potential for developing weather along the route of flight to our scheduled destination we elected to divert and make an overweight landing. We declared an emergency, requested that Airport Rescue and Fire Fighting vehicles be standing by to check for potentially hot brakes on roll-out and proceeded to land uneventfully.

Upon reaching the gate, Maintenance met the aircraft and upon opening the E&E Compartment they discovered a great deal of water had accumulated in that compartment from an unknown source. It would appear that the accumulated moisture/water caused the loss of the First Officer’s PFD and ND and prevented the successful reset of the Symbol Generator-1 Power circuit breaker. We obviously made our situation worse by starting the wrong checklist; however, absent the water in the E&E bay the Symbol Generator-1 circuit breaker should have reset. Additionally, from a systems point of view I should have questioned the First Officer as to why we were pulling the Symbol Generator-1 power circuit breaker for a loss of the right PFD and ND.

In the future I will always confirm that the appropriate checklist for the situation at hand is being utilized by referring to my QRH or the First Officer’s prior to accomplishment of any individual steps in that checklist. I will also attempt to ascertain that from a systems point of view the steps of the checklist make sense for the abnormal situation encountered.

4. Failure to Use a Checklist

We have already seen how interruptions can lead to missing items on a checklist. This BE36 Pilot learned what can happen when an interruption results in missing the whole checklist.

• Upon reducing power over the numbers, I heard the gear warning horn. I began to apply power for a go-around, but saw the propeller stop. At this point, I continued the flare, focused on flying the airplane, landed the aircraft gear-up, and quickly exited the aircraft with two passengers. We proceeded a safe distance to the west into the runway grass and notified Emergency Personnel.

This was the third of three takeoffs and landings for night currency. The other two landings were uneventful. Upon turning base, I noted another aircraft nearing the vicinity. I made another radio call announcing turning base to be certain it was not a faster aircraft on final approach for our destination. This transmission interrupted my habit pattern and I failed to do the BCGUMP (Boost pump, Carb heat, Gas, Undercarriage [landing gear], Mixture and Prop) landing checklist. I believed that the gear was down and that I had three green lights until the prop stopped.

5. Checklist Confusion

Checklists, especially those dealing with emergency or abnormal procedures have to present a clear, unambiguous sequence of actions that will provide the safest and most efficient method of handling a given problem. However, the logic branches in complex procedures can sometimes be problematic. This CRJ900 Flight Crew misread one of the checklist items and the checklist itself may have also contributed to their confusion.

• While descending for arrival, the “R FADEC” caution illuminated. We followed the Quick Reference Handbook (QRH) procedures which included shutting down the Number 2 engine, but only after reviewing the procedure and agreeing that it did indeed require shutting the engine down….

The QRH procedure for a L/R FADEC caution message is somewhat confusing. We had to read the procedure several times just to make sure that we were required to shut the engine down. The procedure calls for shutting down the engine “prior to landing” if all other indications are “normal,” but that is poorly defined. Doing the shutdown right away obviously isn’t required, but should you wait until short final or do it further out? In the end we elected to shut the engine down as we made our descent and were probably still 20 miles or more from the field. This gave us time to review the procedure for single engine landing, make our PA announcement, talk to the flight attendants, coordinate with Approach, etc. Also, while the “NO” side of the checklist leads you to the Single Engine Approach and Landing Abnormal checklist, the “YES” side does not. And yet the “YES” side still requires that the engine be shut down. It would seem only logical that the Single Engine checklist be performed in that case as well.

Upon further review of the QRH, it has come to my attention that the procedure for a FADEC caution, when all other engine indications are normal, was not completed correctly. I misread one of the steps in the procedure that called for the Thrust Reverser to be turned off and instead read it as though the Thrust Lever should be shut off. In the end, having the engine shut off instead of at idle as the QRH called for, made little difference in the outcome.


Safe Landings - March 2014

What Would You Have Done?

Once again CALLBACK offers the reader a chance to “interact” with the information given in a selection of ASRS reports. In “The First Half of the Story” you will find report excerpts describing the event up to the decision point. You may then use your own judgment to determine the possible courses of action and make a decision regarding the best way to resolve the situation. 

The selected ASRS reports may not give all the information you want and you may not be experienced in the type of aircraft involved, but each incident should give you a chance to exercise your aviation decision-making skills. In “The Rest of the Story…” you will find the actions actually taken by reporters in response to each situation. Bear in mind that their decisions may not necessarily represent the best course of action. Our intent is to stimulate thought, discussion, and training related to the type of incidents that were reported.

The First Half of the Story 

Situation # 1 Cessna 210 Pilot’s Report

■ I was on an IFR flight plan…in cruise at 8,000 feet. The autopilot stopped operating. While I was troubleshooting the problem, I noticed that the battery charge was low and falling rapidly. I attempted to notify Approach of the problem and believe that they understood that I…was about to lose communications…. I started turning off some electrical systems in an attempt to save battery power while troubleshooting the alternator. It did not come back online and I turned off the battery to conserve what power remained. I attempted to make radio contact with a hand-held radio, but either its transmissions were too weak or its battery was too low…. I had a hand-held GPS, an iPad and an ADS-B receiver to use for navigation and weather avoidance…. 

To continue along my flight-planned route would be hazardous due to thunderstorm avoidance, a possible frozen pitot tube and potential conflict with other aircraft without transponders. During a break in the IFR conditions, I observed clear air to the southeast and turned toward it…. I decided to continue in the clear air and…descend to a VFR altitude below the cloud bases. Once I got to the east of the line of storms, I turned south paralleling the line of storms…. The more time passed, the more [battery] charge returned…. If I continued on to [destination] there was a reasonable chance that the battery would have sufficient power to lower the gear…[without] an emergency extension procedure…. 

I…was able to make radio contact briefly. I stated my situation, cancelled IFR and explained that while I was likely to lose contact again, I was going to continue on to my destination. The Controller was very helpful and asked if I required assistance and mentioned that [an alternate field] was to the east if I wanted to land there.

What Would You Have Done?

Situation #2  C45 (Beechcraft Model 18) 
Pilot’s Report

■ The aircraft I was flying…did not have a current altimeter and static system inspection which prevented me from filing an IFR flight plan. Weather analysis indicated a thin overcast layer with bases between 500 and 900 feet AGL and a second overcast layer at around 7,000 feet. It was VMC 30 miles to the northeast, the direction of my flight. The forecast indicated the low cloud layer would dissipate before reforming with IMC persisting for the remainder of the day. 

My plan was to be ready to go when the low cloud layer opened up…. I was comfortable with the fact that I could end up between layers because there was plenty of cloud clearance and visibility for VFR flight…to the clear weather along my course…. 

When the lower layer opened up…I was granted a Special VFR clearance. Moments prior to takeoff, the lower layer closed back up and the tower advised the ceiling was 700 broken. I thought that I could takeoff, fly to the open area safely, and climb above the lower layer, all while complying with the FARs. I was wrong. 

After takeoff…I was…trying to fly toward the area where the lower cloud layer was open. As I pressed on, I realized that the open area I intended to climb through was gone. However, I felt okay as I was still 600 to 700 feet above the ground and clear of clouds. 

That didn’t last long. The ceiling began to lower and my comfort level rapidly decreased. I was unable to maintain a minimum safe altitude and remain clear of the clouds. I had lost track of where to turn toward better weather. While I was high enough that I was not concerned about flying into terrain, I became very concerned about radio towers…. I realized that I could become a VFR into IMC statistic.

What Would You Have Done?

Situation #3  EMB-145 First Officer’s Report

■ Takeoff was normal. At around 400 feet, Tower…[advised] that our left engine was producing smoke. No specifics were given on the amount or color. Tower then asked for our intentions…. Both the Captain and I checked engine and all system instruments. There were no abnormal readings. We could not detect any smell of smoke or any abnormal flight characteristics…. We said we would continue and Tower handed us off to Departure. Departure told us they had received the smoke notification from the Tower. We checked all our instruments and systems again and could still not find any faults. 

The Captain then called…Maintenance Control. They said that it was most likely the cold engines that had just warmed up combined with the cold temperature of -2C.

What Would You Have Done?

The Rest of the Story

Situation #1  Cessna 210 Pilot’s Report

The Reporter’s Action:

■ Given…the fact that I could navigate VFR around the weather and any airspace, and possibly avoid an emergency gear extension, I declined to land [at the alternate airfield]. I lost contact as the battery charge dropped again. I continued VFR to the southeast around the line of storms. A few minutes out, I slowed the aircraft, turned on the battery and had enough charge to extend the gear. With all other electrical off, other than the rotating beacon, one NAV Comm and the transponder squawking VFR, I made radio calls for the pattern and performed a no flap landing. 

In reviewing my decision making in this situation, I believe that the decision to get into VFR flight conditions was a good one as well as to use these conditions to navigate around the storms. I might second guess my decision not to land at [an enroute alternate].

Situation #2  C45 (Beechcraft Model 18) 
Pilot’s Report

The Reporter’s Action:

■ My only remaining option was to initiate a climb through the lower layer up to VMC above. As I entered the clouds, I began to think about calling Center to confess my predicament and declare an emergency if necessary. The good news is that after climbing 500 feet I broke out between layers in VMC. Since I was still below any usable IFR altitudes and no longer needed any assistance, I did not call center. 

I determined my position by referencing the VOR and GPS and proceeded on course. In reviewing the airspace [in the area], I realized that I probably went through the edges of the Class D and Class E as I searched for the opening in the lower layer. I am not sure my Special VFR clearance covered this possibility. 

I have flown many years and I am very comfortable flying VFR and IFR, even VFR when the ceiling is low as long as the visibility is as good as it was this day. However, I let my comfort level lull me into departing without a viable Plan A and no Plan B.

Situation #3  EMB-145 First Officer’s Report

The Reporter’s Action:

■ We continued the flight and no problems were encountered…. While in cruise, the Captain and I reviewed the situation and both agreed that we should have returned after Tower notified us of the smoke. We both agreed that it would have been better to have erred on the safe side and returned, as opposed to continuing based on our instrument indications and flight characteristics.


Copyright © 2009, In Flight Media. All rights reserved.
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Unported License.
Creative Commons License

Designed by jbNadler Creative Labs